Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Yun Fu ${ }^{\text {a,b }}$ * and Da-Qi Wang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.050$
$w R$ factor $=0.066$
Data-to-parameter ratio $=11.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(pyridine-2-carboxylato- $\kappa^{2} O, N$)cobalt(III) monohydrate

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{~N}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the cobalt(III) ion shows a distorted octahedral coordination, comprising three N -atom donors and three O -atom donors from three bidentate pyridine-2-carboxylate ligands. The uncoordinated water molecule interacts with nearby carboxyl groups of the pyridine-2-carboxylate ligands by way of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

In the title compound, (I), the cobalt(III) atom shows a distorted octahedral coordination, comprising three N -atom donors and three O -atom donors from three bidenate pyri-dine-2-carboxylato ligands, as shown in Fig. 1. If the coordinating atoms are considered in isolation, this represents a meridional $\mathrm{CoO}_{3} \mathrm{~N}_{3}$ geometric isomer. The cis bond angles in the Co1 octahedron span the range 80.27 (11)-99.48(11) ${ }^{\circ}$. The mean $\mathrm{Co}-\mathrm{O}$ bond length of 1.876 (2) \AA is shorter than the mean $\mathrm{Co}-\mathrm{N}$ bond length of 1.911 (3) \AA (Table 1). In (I), each pyridine-2-carboxylate ligand coordinates to the $\mathrm{Co}^{\mathrm{III}}$ atom via an O atom and an N atom, thus forming fivemembered chelate rings, denoted $R 1, R 2$ and $R 3$, containing atoms $\mathrm{N} 1, \mathrm{~N} 2$ and N 3 , respectively. The pyridine rings, denoted py1, py2 and py3 containing atoms $\mathrm{N} 1, \mathrm{~N} 2$, and N 3 , respectively, are approximately parallel to their respective chelate-ring planes [dihedral angles $=1.51$ (18), 2.13 (16) and $1.60(4)^{\circ}$ for $R 1 / \mathrm{py} 1, R 2 /$ py 2 and $R 3 / \mathrm{py} 3$, respectively]. The dihedral angles between pairs of pyridine rings are 80.54 (10), 85.27 (12) and 85.04 (13) ${ }^{\circ}$ for py1/py2, py1/py3, and py2/py3, respectively.

(I)

The uncoordinated water molecule in (I) forms $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to nearby carboxyl O atoms, resulting in an infinite chain along the a direction.

Experimental

$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ was dissolved in distilled water $(10 \mathrm{ml})$, to which an aqueous mixture (20 ml) of pyridine-2-carboxylic acid $(1.5 \mathrm{mmol})$ and $\mathrm{NaOH}(1.5 \mathrm{mmol})$ was added dropwise at 333 K . The

Received 17 January 2005 Accepted 28 January 2005 Online 12 February 2005

View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for H atoms.

Figure 2
The crystal packing of (I), showing the hydrogen-bond interactions as dashed lines.
mixture was stirred for 6 h and part of the solvent was removed using a rotary vacuum evaporator. The resulting solution was filtered and left in air for 20 d , during which time dark-red prisms of (I) formed. Elemental analysis found: C 48.59, H 3.07, N 9.33 ; calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{CoN}_{3} \mathrm{O}_{7}$: C 48.78, H 3.18, N 9.48\%.

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}} & D_{x}=1.696 \mathrm{Mg} \mathrm{~m}^{-3} \\
M_{r}=443.25 & \text { Mo } K \alpha \text { radiation } \\
\text { Monoclinic, } C 2 / c & \text { Cell parameters from } 1193 \\
a=29.654(18) \AA & \text { reflections } \\
b=8.530(5) \AA & \theta=2.5-20.3^{\circ} \\
c=13.801(8) \AA & \mu=1.04 \mathrm{~mm}^{-1} \\
\beta=95.829(10)^{\circ} & T=298(2) \mathrm{K} \\
V=3473(4) \AA^{3} & \text { Prism, dark red } \\
Z=8 & 0.28 \times 0.25 \times 0.18 \mathrm{~mm}
\end{array}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.760, T_{\text {max }}=0.835$
9671 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.066$
$S=0.95$
3589 reflections
315 parameters

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Co1-O1	$1.873(2)$	$\mathrm{Co} 1-\mathrm{N} 3$	$1.900(3)$
$\mathrm{Co} 1-\mathrm{O} 5$	$1.877(2)$	$\mathrm{Co} 1-\mathrm{N} 2$	$1.914(3)$
$\mathrm{Co} 1-\mathrm{O} 3$	$1.881(2)$	$\mathrm{Co} 1-\mathrm{N} 1$	$1.917(3)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 5$	$178.85(11)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 2$	$84.91(11)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 3$	$88.14(10)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 2$	$170.93(11)$
$\mathrm{O}-\mathrm{Co} 1-\mathrm{O} 3$	$91.99(10)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$84.86(11)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 3$	$96.90(13)$	$\mathrm{O}-\mathrm{Co} 1-\mathrm{N} 1$	$95.01(11)$
$\mathrm{O}-\mathrm{Co} 1-\mathrm{N} 3$	$84.25(13)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1$	$172.98(12)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 3$	$88.04(10)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 1$	$92.28(11)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$88.59(12)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	$95.41(11)$
$\mathrm{O} 5-\mathrm{Co} 1-\mathrm{N} 2$	$90.28(12)$		

Table 2
Hydrogen-bonding geometry $\left({ }_{\mathrm{A}},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H14 $\cdots \mathrm{OS}^{\mathrm{i}}$	$0.886(10)$	$2.012(15)$	$2.864(4)$	$161(3)$
O7-H13 \cdots O4	$0.887(10)$	$1.966(12)$	$2.845(4)$	$171(3)$

Symmetry code: (i) $x,-y, z-\frac{1}{2}$
After the H atoms were located in a difference map, the water $\mathrm{O}-$ H distances were restrained to 0.88 (1) \AA and their $U_{\text {iso }}(\mathrm{H})$ values were allowed to refine freely. All the other H atoms, except H 12 (positioned geometrically), were located in difference maps and restrained in their as-found relative positions $\pm 0.01 \AA$ and their $U_{\text {iso }}(\mathrm{H})$ values were allowed to refine freely.

Data collection: SMART (Bruker, 1997); cell refinement and data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics and preparation of publication material: SHELXTL (Sheldrick, 1997b).

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

